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Abstract— This article presents a (simple) Kalman filter
design along with its solution. The article should come along
with a data set. The intent is as follows:
• Readers complete the design themselves and implement it

in Matlab or Python using the provided data.
• The solution is provided so that readers can get help when

they get stuck. Please try to solve the problem on your
own. You miss the valuable learning and implementation
experience if you simply read the solution.

• Readers should buy a micro-processor (or equivalent) and
IMU to implement the real-time code to try this out with
a stationary IMU.

• The next steps would be to implement an AHRS (Chapter
10 in [1]) followed by a full INS (Chapter 11 in [1]).

Please do not contact me with questions. I am providing this
document and data as an educational service, because many
students try to jump into significantly harder Kalman filter
designs without ever trying and understanding a simple design,
which often leads to frustration later.

If you find errors in the document or implementation, please
do let me know.

I. PROBLEM STATEMENT

You are given measurements from a (stationary) ac-
celerometer. The model of the time evolution of the scalar
position p(t) and velocity v(t) as a function of the acceler-
ation a(t) is

ṗ(t) = v(t) (1)
v̇(t) = a(t). (2)

The accelerometer measurement ũ ∈ < is modeled as

ũ(t) = a(t)− b(t)− n(t) (3)

where a(t) is the acceleration, b(t) is a sensor bias, and
n(t) is white random measurement noise with power spectral
density Qn (See Section 4.4.2 in [1]). The bias is modeled as
a first-order Gauss-Markov process (see Section 4.6 in [1])

ḃ(t) = −λb(t) + ω(t) (4)

where λ ≥ 0 and ω(t) is white random measurement noise
with power spectral density Qω .

The state vector is x(t) = [p(t), v(t), b(t)]
>
.

Problem 1. Starting from a zero initial state, compute a
(dead reckoning) estimate of the position and velocity by
integrating the estimated acceleration

â(t) = ũ(t) + b̂(t)

through the system model of eqns. (1-2).
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Problem 2. The state estimates will drift from their true
values (zero). Plot the drift versus time. Explain why these
plots have the shape that they do.

Problem 3. The estimated state vector is defined as

x̂(t) =
[
p̂(t), v̂(t), b̂(t)

]>
.

Define the error state to be δx = x(t)− x̂(t). Show that the
continuous-time model for the error state is

δṗ(t) = δv(t), (5)
δv̇(t) = δb(t) + n(t), (6)
δḃ(t) = −λδb(t) + ω(t). (7)

Define the matrices F and G such that this model can be
written as

δẋ(t) = Fδx(t) + Gω(t) (8)

where ω(t) = [ω(t), n(t)]>.
Problem 4. Manufacturer specification sheets often show

noise power spectral densities in non-ANSI units. This prob-
lem works through the unit conversions. In the following,
the notation Qn and Qω denote the (constant as a function
of frequency) power spectral density of the white noise
processes n(t) and ω(t), respectively.

Assume that Qn
.
= σ2

n = 1.0 × 10−4 (m/s)2

s in ANSI
units. The parameter σn is the velocity random walk (VRW)
parameter and may be given in various other units: (m/s/s)√

Hz
,

(m/s)√
s

or (m/s)√
Hr

. What are the ANSI units of σn? Find the
numeric value of σn in these alternative units.

Problem 5. Find the VRW parameter on the attached
manufacturer spreadsheet and convert its value to ANSI
units.

Problem 6. Assuming a sample period of T seconds, find
the state transition matrix Φ and driving noise covariance
matrix Qd for the equivalent discrete-time model:

δxk+1 = Φδxk + ωk (9)

where ωk ∼ N(0,Qd).
For numeric computations, use the ANSI parameters from

Problem 3 and let λ = 0.001Hz, Qn = 4.4 × 10−7 (m/s)2

s ,

and Qω = 8× 10−6 (m/s/s)2)
s .

Problem 7. Design and implement a Kalman filter to
estimate the state of the system assuming that a position
measurement occurs with a frequency Fs =

1
T :

yk = y(kT ) = p(kT ) + η(kT )

where ηk ∼ N(0, R) is a assumed to be white.



To implement the measurements, we will use the fact that
the accelerometer is stationary and define its initial position
to be zero. Therefore, each yk has a value of zero. The only
error in this ‘measurement’ is due to vibration of the table,
which is assumed to have magnitude of less than a millimeter.
Therefore the attached Matlab implementation uses a value
of R =

(
1.0× 10−5m

)2
.
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II. SOLUTIONS

Solution 1. The estimates of position p̂(t) and velocity
v̂(t) are computed by integrating

˙̂p(t) = v̂(t) (10)
˙̂v(t) = ũ(t)− b̂(t) (11)
˙̂
b(t) = 0 (12)

Using Euler integration, in discrete-time, the algorithm is

p̂k+1 = p̂k + v̂kT (13)
v̂k+1 = v̂k + ũkT − b̂kT (14)
b̂k+1 = b̂k (15)

where tk = k T and xk = x(tk) = x(k T ). These equations
can be integrated through the duration of the data.

More advanced integration algorithms (i.e., predictor-
corrector, Runge-Kutte) are possible. Try then and compare
the results.

Solution 2. Even though the accelerometer is stationary,
the velocity and position estimates grow (approximately)
linearly and parabolicly with time. This is because the
accelerometer bias is unknown and distinct from b̂; therefore,
the bias error is large (and relatively constant). The integral
of a constant is a line, so the velocity estimate grows linearly,
with a slope approximately equal to the value of the bias.
The second integral of a bias is a parabola, which explains
the shape of the position error.

Initialize the value of b̂(0) to some reasonable value (e.g.,
the first acceleration measurement or the average of the
acceleration measurements), reintegrate the data. Can you
explain the results?

Solution 3. Differencing eqns. (1), (2), and (4) with
equations (10-12) respectively, using eqn. (3) to eliminate
ũ, yields eqns. (5-7). See Section 1.1.1 in [1].

Eqn. (9) is equivalent to eqns. (10-12) for

F =

 0 1 0
0 0 1
0 0 −λ

 and G =

 0 0
0 1
1 0

 . (16)

Solution 4. In ANSI units σn = 1.0× 10−2 (m/s)√
s

. This is
equivalent to

σn = 1.0× 10−2
(m/s)√

s

√
s√
s
= 1.0× 10−2

(m/s/s)√
Hz

.

Similarly, this is equivalent to

σn = 1.0× 10−2
(m/s)√

s

60
√
s√

Hr
= 6.0× 10−1

(m/s)√
Hr

.

Note that it is Qn that is needed to specify the continuous-
time stochastic model, so the designer reads σn, the VRW pa-
rameter, from the manufacturer specification sheet, converts
it to ANSI units, squares it to compute Qn, and proceeds
with the design.

Solution 5. On page 2 of the specification sheet, the man-
ufacturer states that the VRW parameter is σn = 0.04 m/s√

Hr
.

The ANSI value is

σn = 4.0× 10−2
(m/s)√
Hr

= 4.0× 10−2
(m/s)√
Hr

√
Hr

60
√
s

= 6.67× 10−4
(m/s)√

s
.

Therefore, Qn = 4.4× 10−7 (m/s)2

s .
Solution 6. This step is worked out in detail using symbols

in Section 4.9.3 of [1] for the case of λ = 0.0.
Alternatively, for the stated numeric values and a given

value of T , defining Q =

[
Qω 0
0 Qn

]
, numeric values for

Φ and Qd can be computed using eqns. (4.113-4.115) in [1].
Different values of T yield different results. For T = 1.0s,
the results are

Φ =

 1.0000 1.0000 0.4998
0.0000 1.0000 0.9995
0.0000 0.0000 0.9990


and

Qd = 10−6 ×

 0.5464 1.2193 1.3320
1.2193 3.1047 3.9960
1.3320 3.9960 7.9920

 .
Solution 7. The Kalman filter implementation will look

something like the following:
1) Precompute the constants Φ, Qd, R, and H = [1, 0, 0].
2) Initialize the state error covariance matrix P0 and state

estimate x0.
3) Enter a loop that processes the IMU data

a) Integrate the state vector one time step forward
using the accelerometer data.

b) When the time advances T seconds from the
last measurement (i.e., t = kT ), implement the
Kalman filter measurement update:
i) Compute the predicted measurement: ŷk =

Hx̂k
ii) Compute the residual measurement: rk =

yk − ŷk (where yk = 0 for all k)
iii) Advance the error covariance to the measure-

ment time: Pk = ΦPk−1Φ
> + Qd

iv) Compute the variance of the residual:

Sk = HPkH> +R

v) Compute the Kalman gain: K = PkH>S−1k

vi) Compute the updated state estimate:

xk = xk + Krk

vii) Compute the erro covariance at the measure-
ment time, after including the information
from the measurement: Pk = (I−KH)Pk

There are various alternaitve implementations
that may be more computationally efficient or nu-
merically stable. This implementation is straight-
forward and easy to understand. Experiment with
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alternative implementations. Their performance
should be identical.

4) Plot and analyze the results.
The only unspecified quantity in the above description is
the matrix P0. Because the initial position and velocity
are known, their initial covariance will each be zero. The
standard deviation of the initial bias is given on the manu-
facturer data sheet as σb = 8mg = 7.2×10−2 m

s2 . Therefore,
P0 = diag([0, 0, σ2

b ]).

III. INCLUDED MATERIALS
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 M-G350-PD11 

IMU (Inertial Measurement Unit) 
 

 GENERAL DESCRIPTION 

The M-G350-PD11 is a small form factor inertial measurement unit (IMU) with 6 degrees of freedom: triaxial angular rates 
and linear accelerations, and provides high-stability and high-precision measurement capabilities with the use of 
high-precision compensation technology. A variety of calibration parameters are stored in a memory of the IMU, and are 
automatically reflected in the measurement data being sent to the application after the power of the IMU is turned on. With a 
general-purpose SPI/UART supported for host communication, the M-G350-PD11 reduces technical barriers for users to 
introduce inertial measurement and minimizes design resources to implement inertial movement analysis and control 
applications. 

The features of the IMU such as high stability, high precision, and small size make it easy to create and differentiate 
applications in various fields of industrial systems. 

 
 FEATURES 
 Small Size, Lightweight  : 24x24x10mm, 7grams 
 Low-Noise, High-stability 

 Gyro Bias Instability  : 6 deg/hr 
 Angular Random Walk  : 0.2 deg/ hr  

 Initial Bias Error   : to 0.5 deg/s  (1σ) 
 6 Degrees Of Freedom 

   Triple Gyroscopes  : ±300 deg/s, 
 Tri-Axis Accelerometer  : ±3 G 

 16bit data resolution 
 Digital Serial Interface   : SPI / UART 
 Calibrated Stability (Bias, Scale Factor, Axial alignment) 
 Data output rate   : to 1k Sps 
 Calibration temperature range  : −20°C to +70°C 
 Operating temperature range  : −40°C to +85°C 
 Single Voltage Supply   : 3.3 V 
 Low Power Consumption  : 30mA (Typ.) 

 
 

 APPLICATIONS 
 Motion analysis and control 
 Unmanned systems  
 Navigation systems 
 Vibration control and stabilization 
 Pointing and tracking systems 
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 SENSOR SECTION SPECIFICATION 

TA=25°C, VCC=3.3V, angular rate=0 deg/s, ≤±1G, unless otherwise noted. 

Parameter  Test Conditions / 
Comments 

Min. Typ. Max. Unit 

GYRO SENSOR      
Sensitivity      

Dynamic Range  - ±300 - - deg/s 
Sensitivity - Typ-0.5% 0.0125 Typ+0.5% (deg/s)/LSB 
Temperature Coefficient  1 σ, −20°C ≤ TA ≤ +70°C - 10 - ppm/°C 
Nonlinearity  Best fit straight line  - 0.1 - % of FS 
Misalignment  1 σ, Axis-to-axis, Δ = 90° ideal - ±0.1 - deg 

Bias      
Initial Error  ±1 σ - 0.5 - deg/s 
Temperature Coefficient   0.03  

(Linear approximation)
1 σ, −20°C ≤ TA ≤ +70°C 

 0.001  
(deg/s )/°C  

In-Run Bias Stability  1 σ  - 6 - deg/hr 
Angular Random Walk  1 σ  - 0.2 - deg/ hr  
Linear Acceleration Effect   <0.01  (deg/s)/G 

Noise      
Noise Density  1 σ, f = 10 to 20 Hz, no filtering - 0.004 - (deg/s)/ Hz , rms

Frequency Property      
3 dB Bandwidth  - - 133 - Hz 

ACCELEROMETERS       
Sensitivity      

Dynamic Range  - ±3 - - G 
Sensitivity  - Typ-0.5% 0.125 Typ+0.5% mG/LSB 
Temperature Coefficient  1σ, −20°C ≤ TA ≤ +70°C - 20 - ppm/°C 
Nonlinearity  ≤ 1G , Best fit straight line  - 0.1 - % of FS 
Misalignment  1 σ, Axis-to-axis, Δ = 90° ideal - 0.03 - deg 

Bias      
Initial Error  ±1 σ - 8 - mG 
Temperature Coefficient   0.4  

(Linear approximation)
1 σ, −20°C ≤ TA ≤ +70°C 

 0.02  
mG/°C  

In-Run Bias Stability  1 σ  - 0.1 - mG 
Velocity Random Walk  1 σ  - 0.04 - (m/sec)/ hr  

Noise      
Noise Density  1 σ, f = 10 to 20 Hz, no filtering - 0.1 - mG/ Hz , rms 

Frequency Property      
3 dB Bandwidth  - - 148 - Hz 

TEMPERATURE SENSOR       

Scale Factor *1 Output = -15214(0xC492)  
@ +25°C  - 0.0042725 - °C/LSB 

*1) This is a reference value used for internal temperature compensation. We provide no guarantee that the value gives an 
absolute value of the internal temperature. 

Note) The values in the specifications are based on the data calibrated at the factory. The values may change according to 
the way the product is used. 

Note) The Typ values in the specifications are average values or 1σ values. 
Note) Unless otherwise noted, the Max / Min values in the specifications are design values or Max / Min values at the factory 

tests. 
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 RECOMMENDED OPERATING CONDITION 
Parameter  Condition min Typ Max Unit 
VCC to GND  3.15 3.3 3.45 V 
Digital Input Voltage to GND   GND  VCC V 
Digital Output Voltage to GND   −0.3  VCC 

+0.3 
V 

Calibration temperature range Performance parameters 
are applicable 

−20  70 °C 

Operating Temperature Range   −40  85 °C 
 

 TYPICAL PERFORMANCE CHARACTERISTICS 

    
   Data Output Rate: 125Sps 
   Average Filter TAP: N=16 

 
Gyro Allan Variance Characteristic (N=9)  Gyro Bias vs. Temperature Characteristic (N=40) 

 

    
   Data Output Rate: 125Sps 
   Average Filter TAP: N=16 

Accelerometer Allan Variance Characteristic (N=9)  Accelerometer Bias vs. Temperature Characteristic (N=40) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Gyro Noise Frequency Characteristic   Accelerometer Noise Frequency Characteristic 

The product characteristics shown above are just examples and are not guaranteed as specifications. 
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NOTICE: 
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson.  
Seiko Epson reserves the right to make changes to this material without notice.  Seiko Epson does not assume any liability of any kind 
arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no 
representation that this material is applicable to products requiring high level reliability, such as, medical products.  Moreover, no license 
to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in 
accordance with this material will be free from any patent or copyright infringement of a third party.  This material or portions thereof may 
contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan 
and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency. 
 
All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies. 
 
©Seiko Epson Corporation 2012, All rights reserved 
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